7 research outputs found

    Universum-inspired Supervised Contrastive Learning

    Full text link
    As an effective data augmentation method, Mixup synthesizes an extra amount of samples through linear interpolations. Despite its theoretical dependency on data properties, Mixup reportedly performs well as a regularizer and calibrator contributing reliable robustness and generalization to deep model training. In this paper, inspired by Universum Learning which uses out-of-class samples to assist the target tasks, we investigate Mixup from a largely under-explored perspective - the potential to generate in-domain samples that belong to none of the target classes, that is, universum. We find that in the framework of supervised contrastive learning, Mixup-induced universum can serve as surprisingly high-quality hard negatives, greatly relieving the need for large batch sizes in contrastive learning. With these findings, we propose Universum-inspired supervised Contrastive learning (UniCon), which incorporates Mixup strategy to generate Mixup-induced universum as universum negatives and pushes them apart from anchor samples of the target classes. We extend our method to the unsupervised setting, proposing Unsupervised Universum-inspired contrastive model (Un-Uni). Our approach not only improves Mixup with hard labels, but also innovates a novel measure to generate universum data. With a linear classifier on the learned representations, UniCon shows state-of-the-art performance on various datasets. Specially, UniCon achieves 81.7% top-1 accuracy on CIFAR-100, surpassing the state of art by a significant margin of 5.2% with a much smaller batch size, typically, 256 in UniCon vs. 1024 in SupCon using ResNet-50. Un-Uni also outperforms SOTA methods on CIFAR-100. The code of this paper is released on https://github.com/hannaiiyanggit/UniCon.Comment: Accepted by IEEE Transactions on Image Processin

    All Beings Are Equal in Open Set Recognition

    Full text link
    In open-set recognition (OSR), a promising strategy is exploiting pseudo-unknown data outside given KK known classes as an additional KK+11-th class to explicitly model potential open space. However, treating unknown classes without distinction is unequal for them relative to known classes due to the category-agnostic and scale-agnostic of the unknowns. This inevitably not only disrupts the inherent distributions of unknown classes but also incurs both class-wise and instance-wise imbalances between known and unknown classes. Ideally, the OSR problem should model the whole class space as KK+∞\infty, but enumerating all unknowns is impractical. Since the core of OSR is to effectively model the boundaries of known classes, this means just focusing on the unknowns nearing the boundaries of targeted known classes seems sufficient. Thus, as a compromise, we convert the open classes from infinite to KK, with a novel concept Target-Aware Universum (TAU) and propose a simple yet effective framework Dual Contrastive Learning with Target-Aware Universum (DCTAU). In details, guided by the targeted known classes, TAU automatically expands the unknown classes from the previous 11 to KK, effectively alleviating the distribution disruption and the imbalance issues mentioned above. Then, a novel Dual Contrastive (DC) loss is designed, where all instances irrespective of known or TAU are considered as positives to contrast with their respective negatives. Experimental results indicate DCTAU sets a new state-of-the-art.Comment: Accepted by the main track The 38th Annual AAAI Conference on Artificial Intelligence (AAAI 2024
    corecore